Building test data from real outbreaks for evaluating detection algorithms

نویسندگان

  • Gaetan Texier
  • Michael L. Jackson
  • Leonel Siwe
  • Jean-Baptiste Meynard
  • Xavier Deparis
  • Herve Chaudet
چکیده

Benchmarking surveillance systems requires realistic simulations of disease outbreaks. However, obtaining these data in sufficient quantity, with a realistic shape and covering a sufficient range of agents, size and duration, is known to be very difficult. The dataset of outbreak signals generated should reflect the likely distribution of authentic situations faced by the surveillance system, including very unlikely outbreak signals. We propose and evaluate a new approach based on the use of historical outbreak data to simulate tailored outbreak signals. The method relies on a homothetic transformation of the historical distribution followed by resampling processes (Binomial, Inverse Transform Sampling Method-ITSM, Metropolis-Hasting Random Walk, Metropolis-Hasting Independent, Gibbs Sampler, Hybrid Gibbs Sampler). We carried out an analysis to identify the most important input parameters for simulation quality and to evaluate performance for each of the resampling algorithms. Our analysis confirms the influence of the type of algorithm used and simulation parameters (i.e. days, number of cases, outbreak shape, overall scale factor) on the results. We show that, regardless of the outbreaks, algorithms and metrics chosen for the evaluation, simulation quality decreased with the increase in the number of days simulated and increased with the number of cases simulated. Simulating outbreaks with fewer cases than days of duration (i.e. overall scale factor less than 1) resulted in an important loss of information during the simulation. We found that Gibbs sampling with a shrinkage procedure provides a good balance between accuracy and data dependency. If dependency is of little importance, binomial and ITSM methods are accurate. Given the constraint of keeping the simulation within a range of plausible epidemiological curves faced by the surveillance system, our study confirms that our approach can be used to generate a large spectrum of outbreak signals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ارزشیابی عملکرد الگوریتم میانگین متحرک وزن داده شده نمایی در کشف دو مورد طغیان سرخک، با استفاده از رویکرد آزمون داده‌های واقعی

Background & Objectives: Evaluating the performance of outbreak detection methods using real data testing provide the highest degree of validity. The aim of this study was to determine the performance of the Exponentially Weighted Moving Average (EWMA) in real time detection of two local outbreaks in Iran. Methods: The EWMA algorithm (both ƛ= 0.3 and 0.6) applied on daily counts of suspected ca...

متن کامل

Integration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery

The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...

متن کامل

Developing a Feature Extraction of Existing Structures Using an Ambient Vibration Test

The paper aims to extract the dynamic properties of existing structures without utilizing the analytical models. The ambient vibration testing could be used on any type of frame such as concrete, steel and masonry to investigate the structural vulnerability. The method could be the first stage and necessarily for the retrofit process. To achieve this aim, the ambient vibration testing can...

متن کامل

Introducing An Efficient Set of High Spatial Resolution Images of Urban Areas to Evaluate Building Detection Algorithms

The present work aims to introduce an efficient set of high spatial resolution (HSR) images in order to more fairly evaluate building detection algorithms. The introduced images are chosen from two recent HSR sensors (QuickBird and GeoEye-1) and based on several challenges of urban areas encountered in building detection such as diversity in building density, building dissociation, building sha...

متن کامل

Detection of Outbreaks from Time Series Data Using Wavelet Transform

In this paper, we developed a new approach to detection of disease outbreaks based on wavelet transform. It is capable of dealing with two problems found in real-world time series data, namely, negative singularity and long-term trends, which may degrade the performance of current approaches to outbreak detection. To test this approach, we introduced artificail disease outbreaks and negative si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017